Search results for "Eukaryotic cells"

showing 10 items of 27 documents

Probes for studying cholesterol binding and cell biology.

2011

Cholesterol is a multifunctional lipid in eukaryotic cells. It regulates the physical state of the phospholipid bilayer, is crucially involved in the formation of membrane microdomains, affects the activity of many membrane proteins, and is the precursor for steroid hormones and bile acids. Thus, cholesterol plays a profound role in the physiology and pathophysiology of eukaryotic cells. The cholesterol molecule has achieved evolutionary perfection to fulfill its different functions in membrane organization. Here, we review basic approaches to explore the interaction of cholesterol with proteins, with a particular focus on the high diversity of fluorescent and photoreactive cholesterol prob…

Clinical BiochemistryLipid BilayersBiologyBiochemistryCell membranechemistry.chemical_compoundEndocrinologyMembrane MicrodomainsmedicineAnimalsHumansLipid bilayerMolecular BiologyPhospholipidsG protein-coupled receptorFluorescent DyesPharmacologyCyclodextrinsBinding SitesCholesterolOrganic ChemistryCholesterol bindingCell MembraneMembrane ProteinsSterolSterol regulatory element-binding proteinCell biologymedicine.anatomical_structureCholesterolEukaryotic CellsMembrane proteinBiochemistrychemistryMolecular Probeslipids (amino acids peptides and proteins)Steroids
researchProduct

Evaluation of acyl coenzyme A oxidase (Aox) isozyme function in the n- alkane-assimilating yeast Yarrowia lipolytica

1999

ABSTRACT We have identified five acyl coenzyme A (CoA) oxidase isozymes (Aox1 through Aox5) in the n -alkane-assimilating yeast Yarrowia lipolytica , encoded by the POX1 through POX5 genes. The physiological function of these oxidases has been investigated by gene disruption. Single, double, triple, and quadruple disruptants were constructed. Global Aox activity was determined as a function of time after induction and of substrate chain length. Single null mutations did not affect growth but affected the chain length preference of acyl-CoA oxidase activity, as evidenced by a chain length specificity for Aox2 and Aox3. Aox2 was shown to be a long-chain acyl-CoA oxidase and Aox3 was found to …

MESH : Escherichia coliMESH: Sequence Analysis DNAMESH : Molecular Sequence DataMutantGene ExpressionMESH: Base Sequencechemistry.chemical_compoundCloning Molecular[INFO.INFO-BT]Computer Science [cs]/BiotechnologyDNA FungalMESH: MutagenesisMESH : IsoenzymesOxidase testbiologyMESH: Escherichia coliMESH: Acyl-CoA OxidaseMESH : MutagenesisMESH : Cell DivisionMESH : OxidoreductasesIsoenzymesBlotEukaryotic Cells[SDV.MP]Life Sciences [q-bio]/Microbiology and ParasitologyFungalBiochemistryMESH: IsoenzymesMESH: Cell DivisionMESH : Acyl-CoA OxidaseOxidoreductasesSequence Analysis[ INFO.INFO-BT ] Computer Science [cs]/BiotechnologyCell DivisionMESH: Gene ExpressionMESH : Cloning MolecularGenes FungalMolecular Sequence DataMicrobiologyIsozymeWESTERN BLOTTINGAlkanes[SDV.BBM] Life Sciences [q-bio]/Biochemistry Molecular BiologyEscherichia coliMESH: Cloning Molecular[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular BiologyMESH: OxidoreductasesMESH: Saccharomycetales[ SDV.BBM ] Life Sciences [q-bio]/Biochemistry Molecular BiologyMolecular BiologyGeneMESH : AlkanesMESH: Molecular Sequence DataBase SequenceMolecularYarrowiaSequence Analysis DNAMESH : SaccharomycetalesDNAbiology.organism_classificationMolecular biologyYeastMESH : Gene ExpressionMESH: AlkanesMESH: DNA FungalOleic acid[INFO.INFO-BT] Computer Science [cs]/BiotechnologyGeneschemistryMutagenesisSaccharomycetalesMESH : Base SequenceMESH : Genes FungalAcyl-CoA OxidaseMESH : DNA FungalMESH: Genes FungalMESH : Sequence Analysis DNACloning
researchProduct

Heat shock and Cd2+ exposure regulate PML and Daxx release from ND10 by independent mechanisms that modify the induction of heat-shock proteins 70 an…

2003

Nuclear domains called ND10 or PML bodies might function as nuclear depots by recruiting or releasing certain proteins. Although recruitment of proteins through interferon-induced upregulation and SUMO-1 modification level of PML had been defined, it is not known whether release of proteins is regulated and has physiological consequences. Exposure to sublethal environmental stress revealed a sequential release of ND10-associated proteins. Upon heat shock Daxx and Sp100 were released but PML remained, whereas exposure to subtoxic concentrations of CdCl2 induced the release of ND10-associated proteins, including PML, with Sp100 remaining in a few sites. In both cases,recovery times were simil…

Co-Repressor ProteinsMAP Kinase Signaling SystemMacromolecular SubstancesSUMO-1 ProteinPromyelocytic Leukemia ProteinMicePromyelocytic leukemia proteinDeath-associated protein 6Stress PhysiologicalHeat shock proteinEndopeptidasesAnimalsHSP70 Heat-Shock ProteinsEnzyme InhibitorsHeat shockTranscription factorCells CulturedHeat-Shock ProteinsbiologyTumor Suppressor ProteinsIntracellular Signaling Peptides and ProteinsNuclear ProteinsCell BiologyCell Nucleus StructuresNeoplasm ProteinsCell biologyHsp70Cysteine EndopeptidasesEukaryotic CellsGene Expression RegulationImmunologybiology.proteinSignal transductionCarrier ProteinsCo-Repressor ProteinsHeat-Shock ResponseCadmiumMolecular ChaperonesTranscription FactorsJournal of Cell Science
researchProduct

Evolutionary conserved role of eukaryotic translation factor eIF5A in the regulation of actin-nucleating formins

2017

AbstractElongation factor eIF5A is required for the translation of consecutive prolines, and was shown in yeast to translate polyproline-containing Bni1, an actin-nucleating formin required for polarized growth during mating. Here we show that Drosophila eIF5A can functionally replace yeast eIF5A and is required for actin-rich cable assembly during embryonic dorsal closure (DC). Furthermore, Diaphanous, the formin involved in actin dynamics during DC, is regulated by and mediates eIF5A effects. Finally, eIF5A controls cell migration and regulates Diaphanous levels also in mammalian cells. Our results uncover an evolutionary conserved role of eIF5A regulating cytoskeleton-dependent processes…

0301 basic medicineFluorescent Antibody Techniquelcsh:Medicinemacromolecular substancesBiologyArticleMiceEukaryotic cells03 medical and health sciencesEukaryotic translationCell MovementPeptide Initiation FactorsCitosqueletProtein biosynthesisAnimalsProtein Interaction Domains and Motifslcsh:ScienceCytoskeletonActinMultidisciplinaryCèl·lules eucariotesMicrofilament Proteinsfungilcsh:RGene Expression Regulation DevelopmentalRNA-Binding ProteinsTranslation (biology)Biological EvolutionActinsDorsal closureCell biologyElongation factor030104 developmental biologyProtein BiosynthesisForminsMutationbiology.proteinDrosophilalcsh:QEIF5AScientific Reports
researchProduct

Pterostilbene-induced tumor cytotoxicity: a lysosomal membrane permeabilization-dependent mechanism.

2012

The phenolic phytoalexin resveratrol is well known for its health-promoting and anticancer properties. Its potential benefits are, however, limited due to its low bioavailability. Pterostilbene, a natural dimethoxylated analog of resveratrol, presents higher anticancer activity than resveratrol. The mechanisms by which this polyphenol acts against cancer cells are, however, unclear. Here, we show that pterostilbene effectively inhibits cancer cell growth and stimulates apoptosis and autophagosome accumulation in cancer cells of various origins. However, these mechanisms are not determinant in cell demise. Pterostilbene promotes cancer cell death via a mechanism involving lysosomal membrane …

PterostilbeneCancer Treatmentlcsh:MedicineApoptosisResveratrolBiochemistryLung and Intrathoracic Tumorschemistry.chemical_compoundMolecular cell biologyRNA interferenceNeoplasmsPhagosomesStilbenesDrug DiscoveryBreast TumorsBasic Cancer Researchlcsh:ScienceCytotoxicitySkin TumorsApoptotic Signaling CascadeCellular Stress ResponsesMultidisciplinaryMicroscopy ConfocalCell DeathMalignant MelanomaFlow CytometryCellular StructuresSignaling CascadesCell biologyEukaryotic CellsOncologyCaspasesMedicineCellular TypesCell DivisionResearch ArticleSignal TransductionProgrammed cell deathDrugs and DevicesDrug Research and DevelopmentMitosisAntineoplastic AgentsBiologyPermeabilityCell GrowthInhibitory Concentration 50NecrosisComplementary and Alternative MedicineCell Line TumorGastrointestinal TumorsAutophagyHumansHSP70 Heat-Shock ProteinsBiologyCell ProliferationDose-Response Relationship DrugL-Lactate DehydrogenaseCell growthlcsh:RAutophagyProteinsCancers and NeoplasmsRegulatory ProteinschemistrySubcellular OrganellesApoptosisResveratrolCancer celllcsh:QGene expressionLysosomesCytometryPloS one
researchProduct

Synthetic biomolecular condensates to engineer eukaryotic cells

2021

Abstract The compartmentalization of specific functions into specialized organelles is a key feature of eukaryotic life. In particular, dynamic biomolecular condensates that are not membrane enclosed offer exciting opportunities for synthetic biology. In recent years, multiple approaches to generate and control condensates have been reported. Notably, multiple orthogonally translating organelles were designed that enable precise protein engineering inside living cells. Despite being built from only very few components, orthogonal translation can be engineered with subresolution precision at different places inside the same cell to create mammalian cells with multiple expanded genetic codes.…

Biomolecular CondensatesMammalsOrganellesComputer scienceProteinsProtein engineeringComputational biologyBiochemistryAnalytical ChemistrySynthetic biologyEukaryotic CellsGenetic CodeOrganelleAnimalsCurrent Opinion in Chemical Biology
researchProduct

Cytotoxic Action of Serratia marcescens Hemolysin on Human Epithelial Cells

1999

ABSTRACT Incubation of human epithelial cells with nanomolar concentrations of chromatographically purified Serratia marcescens hemolysin (ShlA) caused irreversible vacuolation and subsequent lysis of the cells. Vacuolation differed from vacuole formation by Helicobacter pylori VacA. Sublytic doses of ShlA led to a reversible depletion of intracellular ATP. Restoration to the initial ATP level was presumably due to the repair of the toxin damage and was inhibited by cycloheximide. Pores formed in epithelial cells and fibroblasts without disruption of the plasma membrane, and the pores appeared to be considerably smaller than those observed in artificial lipid membranes and in erythrocytes a…

OsmosisImmunologyOligosaccharidesVacuoleCycloheximideHemolysin ProteinsMicrobiologyHemolysisMicrobiologychemistry.chemical_compoundHemolysin ProteinsAdenosine TriphosphateBacterial ProteinsTumor Cells CulturedHumansPropidium iodideCytotoxicitySerratia marcescensbiologyHemolysinEpithelial CellsFibroblastsbiology.organism_classificationInfectious DiseasesEukaryotic CellschemistrySerratia marcescensMolecular and Cellular PathogenesisPotassiumParasitologyTrypan blueHeLa Cells
researchProduct

The introduction of fluorine atoms or trifluoromethyl groups in short cationic peptides enhances their antimicrobial activity

2006

The effect of introducing fluorine atoms or trifluoromethyl groups in either the peptidic chain or the C-terminal end of cationic pentapeptides is reported. Three series of amide and ester peptides were synthesised and their antimicrobial properties evaluated. An enhanced activity was found in those derivatives whose structure contained fluorine, suggesting an increase in their hydrophobicity.

StereochemistryClinical BiochemistryPharmaceutical Sciencechemistry.chemical_elementPeptideMicrobial Sensitivity TestsBiochemistryChemical synthesisMedicinal chemistryStructure-Activity Relationshipchemistry.chemical_compoundCationsAmideBenzyl CompoundsDrug DiscoveryHumansMolecular Biologychemistry.chemical_classificationTrifluoromethylMolecular StructureOrganic ChemistryCationic polymerizationStereoisomerismBiological activityFluorineAnti-Bacterial AgentsEukaryotic CellschemistryDrug DesignLipophilicityFluorineMolecular MedicineHydrophobic and Hydrophilic InteractionsOligopeptidesBioorganic & Medicinal Chemistry
researchProduct

Dual film-like organelles enable spatial separation of orthogonal eukaryotic translation

2021

Summary Engineering new functionality into living eukaryotic systems by enzyme evolution or de novo protein design is a formidable challenge. Cells do not rely exclusively on DNA-based evolution to generate new functionality but often utilize membrane encapsulation or formation of membraneless organelles to separate distinct molecular processes that execute complex operations. Applying this principle and the concept of two-dimensional phase separation, we develop film-like synthetic organelles that support protein translation on the surfaces of various cellular membranes. These sub-resolution synthetic films provide a path to make functionally distinct enzymes within the same cell. We use t…

Protein designComputational biologyBiology2D phase separationArticleGeneral Biochemistry Genetics and Molecular BiologySynthetic biologyEukaryotic translationOrganelleHumansRNA MessengerAmino AcidsOrganellesmembrane signalingsynthetic biomolecular condensatesProteinsTranslation (biology)Intracellular MembranesProtein engineeringGenetic codeenzyme engineeringHEK293 Cellsgenetic code expansionEukaryotic CellsGenetic CodeProtein Biosynthesisorthogonal translationsynthetic biologyRibosomesFunction (biology)Cell
researchProduct

STAT Proteins: From Normal Control of Cellular Events to Tumorigenesis

2003

Signal transducers and activators of transcription (STAT) proteins comprise a family of transcription factors latent in the cytoplasm that participate in normal cellular events, such as differentiation, proliferation, cell survival, apoptosis, and angiogenesis following cytokine, growth factor, and hormone signaling. STATs are activated by tyrosine phosphorylation, which is normally a transient and tightly regulates process. Nevertheless, several constitutively activated STATs have been observed in a wide number of human cancer cell lines and primary tumors, including blood malignancies and solid neoplasias. STATs can be divided into two groups according to their specific functions. One is …

DNA-Binding ProteinsCell Transformation NeoplasticEukaryotic CellsSTAT1 Transcription FactorSettore MED/06 - Oncologia MedicaNeoplasmsSTATTrans-ActivatorsAnimalsHumansSignal TransductionTranscription Factors
researchProduct